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One-dimensional, nonlinear, shallow-water wave equations are derived from two- 
dimensional Boussinesq equations to investigate resonant reflections due to corru- 
gated boundaries. Small, but short-wave undulations are introduced through water 
depth and channel width. Coupled nonlinear equations for the transmitted and 
reflected wave fields are derived and solved numerically. In  the simple case where 
undulations are zero (the reflection is also zero), the governing equations are used 
to study the propagation of permanent shallow-water waves (cnoidal waves) and to 
examine the generation of higher harmonics in shallow-water waves. The present 
numerical results show that the nonlinear effects are very important in considering 
the resonant reflection of cnoidal waves from a rippled bed. 

1. Introduction 
The interaction between seabed topography and ocean waves is of considerable 

interest to coastal engineers. Certain topographies are capable of reflecting a significant 
amount of wave energy and, therefore, protecting the beach. Recently, the resonant 
reflection of water waves from periodic sandbars has been studied experimentally 
and theoretically by many researchers (e.g. Davies 1982; Davies & Heathershaw 
1984; Mitra & Greenberg 1984; Mei 1985; Kirby 1986a, b; Vengayill986). Based on 
a linear wave theory, the reflected waves can be resonated by periodic sandbars if 
the wavelength of seabed undulations is one-half of that of the incident waves. Liu 
(1987) showed that resonant reflection also occurs in a long channel with an 
undulating width. Since water waves tend to become nonlinear in shallow coastal 
water, a nonlinear shallow-water theory describing the resonant interaction between 
waves and corrugated boundaries is wanting. 

Lau & Barcilon (1972) studied the resonant reflection from a patch of periodic 
sandbars in shallow water. Coupled nonlinear equations were derived for the 
transmitted and the reflected waves. Since only the first two harmonics are included, 
their theory cannot be used to describe the reflection of cnoidal waves. 

In  this paper, we derive a set of coupled, nonlinear, shallow-water wave equations 
describing wave propagation in a long channel with corrugated boundaries. The 
boundary undulations are introduced through either a rippled topography or the 
short-wave variation in channel banks. Only the near-resonance case, where the 
incident wavenumber meets the Bragg condition either exactly or nearly, is studied. 
A numerical scheme is developed to integrate the simultaneous nonlinear differential 
equations; analytical solutions are obtained only for the linear problem. Two types 
of incident waves, a modulated wavetrain and a cnoidal wave, are studied. 
In verifying the accuracy of the numerical scheme used in this paper, we examine 
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the harmonic-generation problems in a long shallow-wave channel with a constant 
depth. Our numerical solutions, including five harmonics, agree well with experi- 
mental data (Goda 1967). We also demonstrate that the present approach and 
computing scheme can accurately simulate a cnoidal wave propagating in a constant 
water depth. 

In studying the resonant reflection of a modulated wavetrain from a rippled bed, 
we demonstrate that Lau & Barcilon’s (1972) numerical results do not satisfy the law 
of energy conservation. Our results, including either two or five harmonics, give larger 
reflection coefficients than those predicted by Lau & Barcilon. Numerical results for 
the resonant reflection of cnoidal waves are also presented. Five harmonics are used 
in computations. 

In  the following section, using the Boussinesq equations, we derive a set of 
two-dimensional wave equations for the Fourier components of the free-surface 
displacement. In  $ 3, the wave equations are reduced to one-dimensional equations 
in a long channel; the effects of depth and width undulations are included. Analytical 
solutions are obtained for linear problems. Numerical solutions for the resonant 
reflection of a modulated wavetrain as well as a cnoidal wavetrain are presented in 
$4. The inclusion of energy dissipation terms in the governing equations is discussed 
in Appendix. 

2. Derivation of shallow-wave evolution equation 
The Boussinesq equations, which describe weakly nonlinear, dispersive shallow- 

water waves, are used in the present study. Using w‘ as the characteristic frequency, 
a; as the characteristic wave amplitude and hi as the characteristic water depth, the 
dimensionless form of the Boussinesq equations can be expressed as (e.g. see Peregrine 
1972) 

(2.1) a6 -+ vqh + €6) u] = o ( E 2 ,  Ep2,  p4), 
at 

- + EU VU + V6 = p2 
au 
at + O( c2, €p2, p4), (2.2) at 

where (2.3a, b )  

6 is the free-surface displacement, and u represents the depth-averaged horizontal 
velocity vector. In (2.1) and (2.2) V denotes the two-dimensional gradient vector. The 
small parameters E and p2, representing the nonlinearity and dispersion respectively, 
are assumed to be of the same order of magnitude. However, solutions obtained from 
(2.1) and (2.2) are still valid for cases where these two parameters are not of the same 
order of magnitude (Peregrine 1972). 

Consider the total depth, z = - h(z,  y), as the sum of a local mean depth z ( x ,  y) and 
a undulation k(z, y); i.e. 

In the present study, we assume that the amplitude of the topographical undulations 
is small in comparison with the local mean depth and that the variation of the total 
depth within the characteristic wavelength is small, i.e. 

h(z ,  Y) = @z, y) + y). (2.4) 
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Assuming periodic motion in time, the free-surface displacement and the velocity 
vector can be expressed as Fourier series : 

Y ( . , y , t ) = : 2 ~ n ( z , y ) e - i n t ;  n = O , + l , f 2  ,..., (2.7a) 
n 

u(z ,y , t )= iX  U,(~,y)e-'"~; n = O , f l , + 2  ,..., (2.7b) 

where (c-n, U-n) are the complex conjugates of (c,, U,). Substituting (2.7) into (2.1) 
and (2.6), and collecting the different Fourier components, we have 

n 

-inC,+V*(hU,)++ 2 V.(g8 U,-,) = O(s2,ep2,p4), (2.8) 
8 

- in U, + !je X U8 * V Un-8 + VC, = - in$2h2V(V * U,) + 0 ( e 2 ,  epZ, p4), (2.9) 

where s = 0, + 1 ,  i-2, ... . From (2.8) and (2.9), we find the following simple 
relationships : 

(2.10) 

(2,11) 

(2.12) 

8 

v* u, = i+ i 4 n  O(s) ,  

1 u, = --VS,+O(E), 

u, = --2 Q U-,+O(s2), 

n 

E 
for n 9 0, and 

2h 8 

5, = -+x U;U-,+O(E~). 
8 

Combining (2.8) and (2.9) and using (2.4), (2.10) and (2.11), we obtain 

(2.13) 

s + n  

The zeroth components (U,, f )  have been excluded from the nonlinear terms in the 
above equation, since the zeroth components are O(E) .  From (2.14), the leading-order - 
equation gives 

n2 
h vy, = --&+O(E). (2.15) 

Substituting (2.15) into (2.14) and assuming that the primary wave propagation 
direction is fx, we have 

EV2Cn + V(8 + n)*VCn + n2 (1 

= O(e2, ep2,p4), (2.16) 
n2 - s2 

8 f 0  
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where (2.17a, b)  

are assumed. Equation (2.16) is a set of nonlinear partial differential equations 
describing the combined refraction and diffraction of two-dimensional shallow-water 
waves. These partial differential equations are of the elliptical type and can be solved, 
in principle, with appropriate boundary conditions as a set of coupled boundary-value 
problems. For the case where the undulation is zero, n = 0 (2.16) can be reduced to 
the equation derived by Liu, Yoon & Kirby (1985). On the other hand if the depth 
is a constant, h = 1.0 and = 0, (2.16) is the same as that derived by Rogers & Mei 
(1978). 

3. Near-resonant reflection in a long channel 
3.1. Governing equations 

If the mean depth E and the short-wave undulation n vary only in the x-direction, 
(2.16) becomes 

For a long channel of width much less than the longitudinal lengthscale, (2.17a, b) 
remain valid. Let b(x) be the width of the channel. If y = b,(x) and b2(x) describe the 
configuration of the channel banks, then b(x) = b2(x) -b,(x). The no-flux boundary 
condition along the channel banks requires 

db 
U n A -  dx Vn = 0 along y = b,(x), (3.2) 

where j = 1 and 2, and (Un,  Vn) are the components of the velocity vector Un. 
Assuming that O(db,/dx) is small and using (2.11), the lateral boundary condition 
becomes 

!!&~-% ax ax ay = O@*) along y = b,(x); j = 1,2. (3.3) 

Integrating (3.1) over the channel width, and applying Leibniz' rule and the lateral 
boundary condition (3.3), we have 

s+ n 

where the total channel width b(x) has been decomposed into two parts, a slowly 
varying local mean width 6(x), and a fast undulating part 6 ( x )  which satisfy the 
following assumptions : 

b = b(x) +b(x), (3.5) 
- 
b - OU) ,  6 - 0k2), 
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The total wave field can be separated into transmitted and reflected waves; i.e. 
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6 = C: +C;* (3.7) 

Here the superscripts + and - denote the transmitted and the reflected waves 
respectively. The lowest-order terms in (3.4) provide the following simple 
relationship : 

f in 
dx 

Substituting (3.8) into the nonlinear terms of (3.4), we have 

s + n  

-(n2+4s2-4ns)c; [z-s = O(s2,~p2,,u4). 1 
The leading-order equation (3.8) suggests a solution of the following form : 

(3.9) 

(3.10) 

where Y$(x) are the complex wave amplitudes which are slowly varying functions 
such that 

The boundary undulations (A, 6) may be expressed as Fourier series: 

(3.11) 

(3.12a) 

(3.12b) 

where HJx) and B,(x) are the amplitudes of the pth and the qth component in depth 
and width undulations respectively; A, and A, are the characteristic wavenumbers 
of the depth undulation and the width undulation respectively. HJx) and B,(z) are 
the slowly varying functions and A ,  and Ab are constants. 

Substituting (3.10) and (3.12) into (3.9) and collecting exp[f in j  (l/R)dx] com- 
ponents, we obtain a set of coupled evolution equations: 

s 4 n  

(3.13) 
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s + n  

-$iYz i(2n-pAh) 5' 1 
i ( 2 n - q ~ ~ )  Jk]} = o(s2, sp2,p4). (3.14) 

Note that for the nth harmonics, p and q are chosen such that (2n-pAh) and 
(2n-qAb) are minimized. This ensures that the last term in (3.13) and (3.14) is a 
slowly varying function. 

By introducing the following transform : 

(3.15) 

(3.13) and (3.14) can be rewritten in terms of A$ as 

s i n  

I H B 
(n-pAh)-P e-iAh5-qAbf e-iAYwx = O(sB, sp2,p4), ( 3 . 1 6 ~ )  h 

is Z (n + s) A; A;-8 eiAansx 
s 9 n  

where 
Actns = (3.17 a )  

APnP = ; (2n-pA, +&u2n3z) dx, (3.17 b) 

(3.17 c) 
Aynq x hz 

In the above equations Actns denotes a detuning factor which is a phase mismatching 
between different harmonics propagating in a same direction. APnp and A m q  
represent detuning factors resulting from the slight deviations in the incident 
wavenumbers from the Bragg wavenumber. We remark here that ( 3 . 1 6 ~ ~  and b) are 
valid only near resonance such that all the detuning factors are of the magnitude of 
O(p2). If the incident waves satisfy the Bragg reflection condition, APnp and Aynp 
are zero. In this case (3.15) and (3.16) are equivalent to those obtained by Lau & 
Barcilon (1972) for a constant channel width. 

If, for simplicity, there is no phase difference between the undulations fi  and 6, 
(3.16a, b) become 

" 
= 1 [A (2n - qAa + &u2n3E) dx. 

s + n  

+iA; Anm e-iAlnmx = O(s2,sp2,p2), (3.18) 
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where 

s* n 

-iAi A ; ,  eiAPnmZ = O(s2,~,u2,,u2) (3.19) 

A,, = i{(n-mA)--rnA H m  
4 h 

APnm =; 1 1  ~ a ( 2 n - m A + $ 2 n 3 ~ ) d x ,  

( 3 . 2 0 ~ )  

(3.20 b )  

and A;tm is the complex conjugate of Anm.  

3.2. Analytical solutions for linear problems 
In this section, we consider the linear problems with a simplified geometry where the 
mean depth and the mean width are constants; i.e. X = 1 and 8 = constant. The 
linearized governing equations become 

(3.21) 

(3.22) 

where A,, and AP,, are reduced to 

A , ,  =-  (n-mA)H,-mA- , ( 3 . 2 3 ~ )  b 

(3.233) 

These equations can be viewed as the shallow-water limit of the linear theory 
developed by Liu (1987). In  the case of a channel with a constant width (B, = 0), 
these equations recover Mei's (1985) linear theory in the shallow-water limit. 

Consider the case where the undulation is confined within a finite region, 0 < x < L, 
and the incident wavetrain is arriving from x - - 00. There is no reflected wave from 
x - 00. Equations (3.21) and (3.22) have the following analytic solution: 

4 Y Bml 
AP,, = (2n-mA+$,u2n3). 

(3.25) 

where 8' = 1Anml'- (iA/3nm)2, (3.26) 

and A i ( 0 )  are the incident wave amplitudes of the nth harmonic at x = 0. The 
energy conservation requirement is satisfied by (3.24) and (3.25); i.e. 
lA;(x)/A:(0)12 + lA,(x)/Ai(0)12 = 1. 

4. Numerical solutions in a channel with a constant width 
Since there is no general analytical solution for nonlinear equations (3.18) and 

(3.19), a numerical integration scheme must be employed to solve a specific problem. 
As a, particular set of examples, we consider the shallow-water wavetrain propagating 
over a ripple patch in a channel with a constant mean depth and a aonstant width. 
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f i =  1 
I 
I 
I 

- 
A 

FIQURE 1.  Definition sketch. 

From (3.18) and (3.19), the governing equations can be reduced to 

where 
s*n 

APnm = 2n-mA+&2n3, (4.3a) 

A n ,  = -inH, + O(e2).  (4.3b) 

Here O(e2) is the abbreviation for 0(e2,ep2,p4). The rippled bed has only one 
wavenumber satisfying the Bragg reflection condition associated with the first 
harmonic of the incident wavetrain. As shown in figure 1, the water depth is assumed 
to be 

(4.4) h = 1-8 s i n h  = 1 ++id (eiAz-e+" 1, 

where the real quantity 8 represents the O(e)  amplitude of the depth undulations. 

4.1. Propagation and rejection of a modulated wavetrain 

The first example examined here concerns the resonant reflection of a modulated 
wavetrain over a rippled bed in an otherwise constant depth. This problem was first 
studied by Lau & Barcilon (1972) using two harmonics. Their governing equations 
for the transmitted and reflected wave fields are different from (4.1) and (4.2). 

To ensure the accuracy of the numerical scheme used for integrating (4.1) and (4.2), 
we first obtained numerical solutions for a shallow-water harmonic-generation 
problem in a constant depth and compared the numerical solutions with experimental 
data by Goda (1967). Since the reflection is absent, the governing equation (4.1) 
becomes 

%+fie (n+s)A:A;- ,  e-i~un8z = 0. (4.6) 
dx s*o 

s*n 

The fourth-order Runge-Kutta method is employed to integrate (4.6) with boundary 
conditions Af(0) = 1 and Ai(0)  = 0 for n + 1. 



Resonant rejection of shallow-water waves due to corrugated boundaries 459 

4 -  

3 -  

4 
2 -  

1- 

t 
++ I 

I 
I I I I .’ r I 

0 1 2 3 4 5 6 

AS 
FIGURE 2. Beat length La 88. mismatch parameter AS. -, theory by Mei & Unliiata (1972); 
+ + +, laboratory data from Goda (1967); 000, numerical result using 2 harmonics; 0.0, 
numerical result using 5 harmonics. 

Numerical solutions for using two harmonics ( n  = 2) and five harmonics (n = 5 )  
are obtained and plotted in figure 2 for the beat length of the second harmonic va. the 
phase mismatch parameter Ah’. The beat length L, is defined as the distance between 
two successive second-harmonic wave crests ; the phase mismatch parameter 
measures the relative importance of the nonlinearity and the dispersion, i.e. 

A S = - .  4P2 
3s (4.7) 

As shown in figure 2, the numerical solutions with two harmonics agree very well with 
Mei & Unluata’s (1972) analytical solutions. In the region of smaller A S  (the 
nonlinearity becomes more important), numerical solutions with five harmonics yield 
better agreement with Goda’s data. As AS becomes even smaller, more harmonics 
should be included in the analysis. Indeed, in a related work Bryant (1973) has made 
more accurate computations by including 1 1 harmonics in the coupled equations 
derived from the KdV equations. Other related experimentd and theoretical work 
concerning the higher-harmonic generation in shallow water can be found in 
Boczar-Karakiewicz (1972) and Paplinska, Rugeldlnd & Werner (1983). 

From the evidence of the previous example, the fourth-order RungeKutta method 
is a suitable scheme for solving the simultaneous nonlinear ordinary differential 
equation (4.6). To include the reflected wave field A; in the analysis, the scheme must 
be modified. Liu & Tsay (1983) developed an iteration scheme to solve the coupled 
equations similar to (4.1) and (4.2). They first solved the transmitted wave field, i.e. 
A:, in (4.1) by ignoring the reflected wave field entirely. Once the approximated 
transmitted wavg field is obtained, the reflected wave field is calculated from (4.2) 
treatine; the A: as known quantities. The newly obtained values of A; are used in 
(4.1) to find the corrected transmitted wave field. The procedure is repeated until 
converged solutions are obtained. Provided that the reflected wave intensity is weak, 
Liu & Tsay’s (1983) iteration scheme converges and yields accurate solutions. In  the 
present study, the reflection is strong because of resonance. The iteration scheme can 
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IAW, C 

0 0.2 0.4 0.6 0.8 1.0 
X l L  

F’IQURE 3. Transmission intensity [&I2, reflection intensity IAJe and integration constant C 
(0.4298) of modulated wave from linear theory. B = 0, 1 = 15.15, 6 = 0.264 and A:(O) = 1. 

still be successful if we increase the amplitude of the topographical undulations 
gradually from zero to the desired value during the iterative procedure. 

Numerical solutions are obtained for the transmitted and reflected wave fields over 
a rippled bed described in figure 1 and (4.4). Focusing on the resonance case, we use 
the following parameters, which are equivalent to those used by Lau & Barcilon 
(1972) : 

(4.8) 

I 

ADll = 0, Af(0) = 1, A i ( 0 )  = 0 if In1 + I ,  

4 
A S =  0.3, 6 =  3 ~ ,  I = - 

3s’ 

where I is called the interaction length (Armstrong et al. 1962) in nonlinear optics. 
The interaction length is defined as the distance, along the path of the modulating 
shallow-water wave in a constant depth, from the point where the second-harmonic- 
wave energy intensity is zero to the point where the second-harmonio wave 
component has gained about 75% of the wave energy from the first harmonic. To 
compare our solutions with Lau & Barcilon’s (1972) results, we use the following 
numerical values of parameters: E = 0.088, then ,u2 = 0.0198, S = 0.264, and 
I = 15.15. The length of the rippled bed L is chosen to be the same as the interaction 
distance I (Lau & Barcilon 1972). As indicated in (4.18), and the starting point of 
the rippled bed, z = 0 coincides with the crest of the first harmonic. 

To verify the present iterative numerical scheme, we obtained numerical solutions 
for the linear problems and compared them to the analytical solutions given in (3.24) 
and (3.25). Numerical results coincide with the analytical solutions almost perfectly. 
The transmitted and reflected wave intensities over the rippled bed are plotted in 
figure 3. The difference between the analytical and numerical results is not visible. 
The maximum reflection, which occurs at the front of the rippled bed, is 0.76. Because 
of the conservation of wave energy, the following is true (Lau & Barcilon 1972) : 

where G is a constant, which is satisfied by the numerical results shown in figure 4. 
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I A 3 ,  C 

0 0.2 0.4 0.6 0.8 1.0 

xf L 

FIQURE 4. Transmission intensities lAilg, reflection intensities IAJs and integration constant C 
(0.5079) of modulated wave from nonlinear theory using 2 harmonics. A 8  = 0.3, 1 = 15.15, 
6 = 0.264, &(O) = 1 and A:(O) = 0 if llzl =# 1. 

0 0.2 0.4 0.6 0.8 1.0 

x / L  
FIQURE 5. Transmission intensities lA:12, reflection intensities IAJp and integration. constant C 
(0.5144) of modulated wave from nonlinear theory using 5 harmonics (see figure 4 for parameters). 

Numerical results based on the nonlinear theory are obtained for two caaes: two 
harmonics and five harmonics. The wave-harmonic intensities for each case are shown 
in figures 4 and 5 respectively. If the reflection coefficient R is defined as 

(4.10) 

the reflection coefficient for both cases is 0.6. The inclusion of higher harmonics does 
not affect the reflection coefficient significantly. On the other hand, the reflection 
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0 0.2 0.4 0.6 0.8 1.0 
X l L  

FIGURE 6. Transmission intensities I&l*, reflection intensities lAJ* and integration constant C by 
Lau & Barcilon (1972) (see figure 4 for parameters). 

coefficient is over-estimated by the linear theory, which ignores the energy transfer 
from the lower harmonics to higher harmonics through nonlinearity. 

Leu t Barcilon (1972) studied the same problem, including only two harmonics. 
Their numerical solutions showed smaller reflected wave intensities ; the reflection 
coefficient was 0.46. We discovered, however, that their numerical results do not 
satisfy the conservation of energy ; their C-value is not a constant over the rippled 
bed. For comparison, we have replotted their results in figure 6, using our notation. 
As indicated in figures 4 and 5, our numerical solutions give constant C-values for 
cwes with both two and five harmonics. 

The effects of the detuning factor A& on the reflection are examined next. Using 
E = 0.0881, ,uz = 0.1067, 6 = 0.2 and L = lox, we calculated the transmitted and 
reflected wave fields for different values of APll L. Five harmonics are kept in the 
computations. The reflected wave intensities at  the beginning point of the rippled 
bed (z = 0) are plotted in figure 7. The analytical solutions (3.25) based on the linear 
theory are also shown for comparison. The linear theory presents a symmetric curve 
with respect to the resonance condition (ABll L = 0). The nonlinear solutions are 
skewed with the maximum reflection intensity at ABll L = 1.75. It is also noticeable 
that the nonlinearity reduces not only the maximum reflection but also the range 
of APll L within which the reflection is significant. 

4.2. RefEection of a cnoidal wave 

The cnoidal wave, propagating in a constant water depth without changing its shape, 
can be expressed in the Fourier series shown in (2.7a). According to Miles (1976) and 
Sarpkaya & Isaacson (1981) the amplitude of each harmonic is found to be 

(4.11) 

where A; is the amplitude of the nth harmonic, k' is the wavenumber of the first 
harmonic, hi is the water depth and r is given by the equation 

A; = !jk'2his nrn( 1 - ren )-l, n = 1,2, ..., 

-RK(K) 
r =  exp{ }. 

K ( 4  
(4.12) 
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I .o 

(b) 
0.8 

0.6 

E IAJ’ 

0.4 

0.2 

0 
- 20 - 10 0 10 

API L 
FIGURE 7. (a) Reflected first-harmonic amplitude IAJ, and (b)  reflection intensity xC,IAJs of 
modulated wave. -, linear theory; + + +, nonlinear theory using 5 harmonics. E = 0.0881, 
ps = 0.1067, 6 = 0.2, L = lox, &(O) = 1 and A:(O) = 0 if 1121 = 1. 

Here K is the complete elliptic integral of the first kind, K is the modulus and 
K ( = (1 - K~)+) is the complementary modulus. K is uniquely related to wave height 
H’, water depth hi, and wavenumber k’, by 

- 

(4.13) 

All the quantities with a prime are dimensional ones. Introducing the characteristic 
wave amplitude a; m 

a i = ( z A : ) ,  n=1,2 ,..., (4.14) 
r 

we define the normalized wave amplitude A ,  by 

A_, = A,. (4.15) A , = -  A:, 
a; ’ 
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(41 
1 .o 

-6n 0 6r 
X 

12r 

(4 4.0 

-2.0 

-4.0 I I I I I I I I 

- 671 0 6n 12n 
X 

FIGURE 8. (a) Wave amplitude 

corresponding free-surface displacement g at t = 0. 

of a cnoidal wave propagating on a flat bottom from nonlinear 
a ,  5; and ( b )  n =  1. -.._ 2 .  _-- 3 .  --- 4. ..... theory using 5 harmonics; -, I ,  1 ,  , ?  

To demonstrate that the present model can simulate approximately the propagation 
of a cnoidal wave, we choose IT = 2 m, hi = 10 m and wf = 0.3234 rad/s. The other 
dimensional parameters are A; = 0.7864 m, At = 0.370 m, A: = 0.1382 m, 
A; = 0.0460 m, A; = 0.0144 m, a; = 0.8813 m. The corresponding dimensionless 
parameters become A, = 0.8923, A ,  = 0.4198, A, = 0.1568, A ,  = 0.0522, 
A, = 0.0163, E = 0.0881, and pz = 0.1067. We have ignored the higher harmonics 
(n 3 6) whose amplitudes are smaller than 0.55 % of that of the first harmonic. Using 
these parameters as initial conditions, (4.1) is solved numerically for the transmitted 
wave field only; i.e. A; = 0. The water depth is constant (h = 1 and 6 = 0), and the 
computations are performed between -6.11: < x < 12x. Numerical results for the 
free-surface profde and the wave amplitude for each harmonic are shown in figure 8. 
If the theory were without approximations, the amplitude distribution for each 
harmonic should have been uniform. The variations in our numerical results are, 
however, quite small and the free-surface profile appears to remain in the same shape. 

To investigate the resonant reflection of cnoidal waves from the rippled bed we 
place the rippled bed along 0 < x < 6x. The wavenumber of the ripples satisfies the 
Bragg reflection condition associated with the first harmonic of the cnoidal wave (i.e. 
A = 2 + h 2  and AP,, = 0). Using 6 = 0.2, the transmitted and reflected wave 
amplitudes and the corresponding free-surface displacement at  t = 0 are plotted in 
figure 9(a, b, c) respectively. For comparison, linear solutions with E = 0 are also 
shown in figure lO(a-c) although, strictly speQking, a linear theory is not valid in this 
case. In the linear case only the first harmonic is affected by the rippled bed 
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FIGURE 9. (a) Transmitted wave amplitude IAiI, (a) reflected wave amplitude IAJ of uniform cnoidal 
, 4 ;  -...-., wave from nonlinear theory using 5 harmonics; -, .n= 1; _.._ 2;--- 3;--- 

5; and (c) free-surface displacement 4 at t = 0. 

(figure 10a). The nonlinearity, however, transfers a certain amount of wave energy 
from the higher harmonics fo the first harmonic. As a result, the reflected 
first-harmonic wave intensity predicted by the nonlinear theory over the rippled bed 
is slightly higher than that suggested by the linear theory. 

In front of the rippled bed (5 < 0), the linear theory predicts uniform reflected wave 
amplitude. The nonlinear theory indicates that the amplitude of the first harmonic 
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FIGURE 10. (a, b ,  c). As for figure 9 but from linear theory. 

12n 

decreases as the reflected wave propagates upstream. This is caused by the energy 
transfer to higher harmonics. To highlight this point, we have replotted lAJ from 
linear and nonlinear theories together in figure 11. 

After the cnoidal waves pass the rippled-bed patch, the permanent shape degen- 
erates because of the imbalance of energy among harmonics (figure 9c). 
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5. Discussion and concluding remarks 
In this paper we have studied the propagation of a shallow-water wave in a 

constant depth and the resonant reflection from corrugated boundaries. 
In  deriving the governing equations we neglected energy dissipation. A simple 

linear energy-dissipation model can be included in the governing equations and is 
given in the Appendix. No attempt has been made to solve the two-dimensional 
equation (2.16), which includes refraction and diffraction effects; numerical solutions 
of (2.16) are straightforward. 

The effects of nonlinearity on the reflection of shallow-water waves have been 
investigated for the c&8e of a constant mean depth. Depending on the incident wave 
conditions, the nonlinearity affects the reflection in different ways. For the reflection 
of cnoidal waves nonlinearity causes stronger reflection of the first-harmonic wave 
component over the rippled patch than that predicted by linear theory. As the 
reflected waves propagate upstream, the wave intensity of the reflected first-harmonic 
waves decreases because of the energy transfer between harmonics. On the other 
hand, for the modulated incident wavetrain calculated herein nonlinearity causes 
weaker reflection of the first harmonic than that predicted by the linear theory owing 
to the partitioning of energy between reflected and transmitted higher harmonics 
generated over the rippled patch. These results might be changed for different 
boundary conditions at the beginning of the rippled bed. 

The combined effects of the detuning factor APl1 and nonlinearity reduce the 
reflection. Linear theory gives a symmetric reflection curve about the Bragg condition 
(API1 = 0), while nonlinear theory predicts a skewed one. Nonlinearity reduces the 
maximum value of reflection and shifts the maximum to the positive side of APll. 
As reported by Davies (1982), the shifting of the maximum reflection could also be 
influenced by the number of ripples on the bed. Owing to the lack of experimental 
data in shallow water, we show only the general trends involved in nonlinearity. 
Careful experiments would be valuable to confirm the present study. 
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Appendix 
The Boussinesq equations (2.1) and (2.2) can be modified to include an energy- 

dissipation term due to either a laminar viscous boundary layer or turbulent bottom 
friction. The momentum equation (2.6) can be rewritten as 

where w ( x , y )  is an energy dissipation coefficient and is assumed to be O(E). The 
continuity equation remains the same as (2.1). 

For the periodic motion in time we propose that 

wu = $ Z Wn Un e-int. (A 2) 
n 

Substituting (2.7a, b )  and (A 2) into (A 1)  and collecting Fourier components, we 
obtain 

-i(n+ i Wn) U, ++ Z U, -VU,-, + Vcn = &u2n27iVcn + O(s2), (A 3) 
8 

where IV Wnl - O(e2) are assumed. 
Following the same procedure as given in 82, we have 

+ ~ Z $ i n v . ( &  Un_,)+$7iV.(U;VUn_,)]  = O(e2). (A4) 

Upon ignoring 6 and terms of the order of p2 and E ,  and considering only the first 
harmonic, we simplify (A 4) and convert the resulting equation into the following 
form : 

8 

V‘ * (gh’V’r) + (d2 + iw’o’) = 0. (A 5 )  

This equation is the shallow-water limit of Booij’s (1981) model. After introducing 
the slow scale in the lateral direction (A 4) is rewritten as 

- nR 
hv2cn + V(Z+ K) - VY, + n (n + i W, - - + & ~ 7 i )  h gn 

8 9 n  

Equation (A 6), instead of (2.16), can be used as a governing equation. The energy 
dissipation coefficients for various cases are available from the work of Dalrymple, 
Kirby & Hwang (1984). 
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